频道栏目
读书频道 > 数据库 > 其他综合 > Python数据分析与挖掘实战
3.1 数据质量分析
2015-12-14 13:07:37     我来说两句
收藏   我要投稿

本文所属图书 > Python数据分析与挖掘实战

本书共15章,分两篇:基础篇和实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的  立即去当当网订购

数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础,没有可信的数据,数据挖掘构建的模型将是空中楼阁。

数据质量分析的主要任务是检查原始数据中是否存在脏数据,脏数据一般是指不符合要求,以及不能直接进行相应分析的数据。在常见的数据挖掘工作中,脏数据包括如下内容。

缺失值。

异常值。

不一致的值。

重复数据及含有特殊符号(如#、¥、*)的数据。

本小节将主要对数据中的缺失值、异常值和一致性进行分析。

您对本文章有什么意见或着疑问吗?请到论坛讨论您的关注和建议是我们前行的参考和动力  
上一篇:引言
下一篇:3.1.1 缺失值分析
相关文章
图文推荐
排行
热门
最新书评
特别推荐

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训 | 举报中心

版权所有: 红黑联盟--致力于做实用的IT技术学习网站