首页 > 数据库 > 其他综合 > 正文
2.3.1 Numpy
2015-12-11 15:48:07     我来说两句      
收藏    我要投稿

Python并没有提供数组功能。虽然列表可以完成基本的数组功能,但它不是真正的数组,而且在数据量较大时,使用列表的速度就会慢得让人难以接受。为此,Numpy提供了真正的数组功能,以及对数据进行快速处理的函数。Numpy还是很多更高级的扩展库的依赖库,后面章节介绍的Scipy、Matplotlib、Pandas等库都依赖于它。值得强调的是,Numpy内置函数处理数据的速度是C语言级别的,因此在编写程序的时候,应当尽量使用它们内置的函数,避免出现效率瓶颈的现象(尤其是涉及循环的问题)。

在Windows中,Numpy安装跟普通的第三方库安装一样,可以通过pip安装:

pip install numpy

也可以自行下载源代码,然后用

python setup.py install

安装。在Linux下上述方面也是可行的。此外,很多Linux发行版的软件源中都有Python常见的库,因此还可以通过Linux自带的软件管理器进行安装,如在Ubuntu下可以用

sudo apt-get install python-numpy

安装。安装完成后,可以使用以下命令进行测试。

代码清单2-1 Numpy基本操作

# -*- coding: utf-8 -*
import numpy as np #一般以np作为numpy的别名
a = np.array([2, 0, 1, 5]) #创建数组
print(a) #输出数组
print(a[:3]) #引用前三个数字(切片)
print(a.min()) #输出a的最小值
a.sort() #将a的元素从小到大排序,此操作直接修改a,因此这时候a为[0, 1, 2, 5]
b= np.array([[1, 2, 3], [4, 5, 6]]) #创建二维数组
print(b*b) #输出数组的平方阵,即[[1, 4, 9], [16, 25, 36]]

Numpy是Python中相当成熟和常用的库,因此关于它的教程有很多,最值得一看的是它官网的帮助文档,还有很多中英文教程,读者遇到相应的问题时,可以自行搜索对应的内容。

参考链接:

http://www.numpy.org/。

http://reverland.org/python/2012/08/22/numpy/。

点击复制链接 与好友分享!回本站首页
您对本文章有什么意见或着疑问吗?请到论坛讨论您的关注和建议是我们前行的参考和动力  
上一篇:2.3 Python数据分析工具
下一篇:2.3.2 Scipy
相关文章
图文推荐
排行
热门
文章
下载
读书

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训 | 举报中心

版权所有: 红黑联盟--致力于做实用的IT技术学习网站