频道栏目
读书频道 > 数据库 > 其他综合 > Python数据分析与挖掘实战
1.4.5 挖掘建模
2015-12-11 13:37:59     我来说两句
收藏   我要投稿

本文所属图书 > Python数据分析与挖掘实战

本书共15章,分两篇:基础篇和实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的  立即去当当网订购

样本抽取完成并经预处理后,接下来要考虑的问题是:本次建模属于数据挖掘应用中的哪类问题(分类、聚类、关联规则、时序模式或者智能推荐),选用哪种算法进行模型构建?

这一步是数据挖掘工作的核心环节。针对餐饮行业的数据挖掘应用,挖掘建模主要包括基于关联规则算法的动态菜品智能推荐、基于聚类算法的餐饮客户价值分析、基于分类与预测算法的菜品销量预测、基于整体优化的新店选址。

以菜品销量预测为例,模型构建是对菜品历史销量,是综合考虑了节假日、气候和竞争对手等采样数据轨迹的概括,它反映的是采样数据内部结构的一般特征,并与该采样数据的具体结构基本吻合。模型的具体化就是菜品销量预测公式,公式可以产生与观察值有相似结构的输出,这就是预测值。

您对本文章有什么意见或着疑问吗?请到论坛讨论您的关注和建议是我们前行的参考和动力  
上一篇:1.4.4 数据预处理
下一篇:1.4.6 模型评价
相关文章
图文推荐
排行
热门
最新书评
特别推荐

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训 | 举报中心

版权所有: 红黑联盟--致力于做实用的IT技术学习网站