读书频道 > 网站 > 网页设计 > Python数据分析与挖掘实战
3.1.2 异常值分析
15-12-14    下载编辑
收藏    我要投稿   

本文所属图书 > Python数据分析与挖掘实战

本书共15章,分两篇:基础篇和实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的立即去当当网订购

异常值分析是检验数据是否有录入错误以及含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会产生不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。

异常值是指样本中的个别值,其数值明显偏离其余的观测值。异常值也称为离群点,异常值的分析也称为离群点分析。

(1)简单统计量分析

可以先对变量做一个描述性统计,进而查看哪些数据是不合理的。最常用的统计量是最大值和最小值,用来判断这个变量的取值是否超出了合理的范围。如客户年龄的最大值为199岁,则该变量的取值存在异常。

(2)3原则

如果数据服从正态分布,在3原则下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。在正态分布的假设下,距离平均值3之外的值出现的概率为P(|x-|>3)≤0.003,属于极个别的小概率事件。

如果数据不服从正态分布,也可以用远离平均值的多少倍标准差来描述。

(3)箱型图分析

箱型图提供了识别异常值的一个标准:异常值通常被定义为小于QL-1.5IQR或大于QU+1.5IQR的值。QL称为下四分位数,表示全部观察值中有四分之一的数据取值比它小;QU称为上四分位数,表示全部观察值中有四分之一的数据取值比它大;IQR称为四分位数间距,是上四分位数QU与下四分位数QL之差,其间包含了全部观察值的一半。

箱型图依据实际数据绘制,没有对数据作任何限制性要求(如服从某种特定的分布形式),它只是真实直观地表现数据分布的本来面貌;另一方面,箱型图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的鲁棒性:多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响。由此可见,箱型图识别异常值的结果比较客观,在识别异常值方面有一定的优越性,如图3-1所示。


 

在餐饮系统中的销量额数据可能出现缺失值和异常值,如表3-1中数据所示。


 

分析餐饮系统日销量额数据可以发现,其中有部分数据是缺失的,但是如果数据记录和属性较多,使用人工分辨的方法就不切合实际,所以这里需要编写程序来检测出含有缺失值的记录和属性以及缺失率个数和缺失率等。

在Python的Pandas库中,只需要读入数据,然后使用describe()函数就可以查看数据的基本情况。

 

import pandas as pd
catering_sale = '../data/catering_sale.xls' #餐饮数据
data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列
data.describe()

运行结果如下。

           销量

count   200.000000
mean   2755.214700
std     751.029772
min      22.000000
25%    2451.975000
50%    2655.850000
75%    3026.125000
max    9106.440000

其中count是非空值数,通过len(data)可以知道数据记录为201条,因此缺失值数为1。另外,提供的基本参数还有平均值(mean)、标准差(std)、最小值(min)、最大值(max)以及1/4、1/2、3/4分位数(25%、50%、75%)。更直观地展示这些数据,并且可以检测异常值的方法是使用箱线图。其Python检测代码如代码清单3-1所示。

代码清单3-1 餐饮销额数据异常值检测代码

#-*- coding: utf-8 -*-
import pandas as pd

catering_sale = '../data/catering_sale.xls' #餐饮数据
data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列

import matplotlib.pyplot as plt #导入图像库
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

plt.figure() #建立图像
p = data.boxplot() #画箱线图,直接使用DataFrame的方法
x = p['fliers'][0].get_xdata() # 'flies'即为异常值的标签
y = p['fliers'][0].get_ydata()
y.sort() #从小到大排序,该方法直接改变原对象

#用annotate添加注释
#其中有些相近的点,注解会出现重叠,难以看清,需要一些技巧来控制。
#以下参数都是经过调试的,需要具体问题具体调试。
for i in range(len(x)):
  if i>0:
    plt.annotate(y[i], xy = (x[i],y[i]), xytext=(x[i]+0.05 -0.8/(y[i]-y[i-1]),y[i]))
  else:
    plt.annotate(y[i], xy = (x[i],y[i]), xytext=(x[i]+0.08,y[i]))

plt.show() #展示箱线图

代码详见:demo/code/ abnormal_check.py

运行上面的程序,其结果为“缺失值个数为:1”,同时可以得到如图3-2所示的箱型图。

从图3-2中可以看出,箱型图中的超过上下界的7个销售额数据可能为异常值。结合具体业务可以把865、4060.3、4065.2归为正常值,将22、51、60、6607.4、9106.44归为异常值。最后确定过滤规则为:日销量在400以下5000以上则属于异常数据,编写过滤程序,进行后续处理。

 

点击复制链接 与好友分享!回本站首页
分享到: 更多
您对本文章有什么意见或着疑问吗?请到论坛讨论您的关注和建议是我们前行的参考和动力  
上一篇:1.3 功能
下一篇:1.5 小结
相关文章
图文推荐
JavaScript网页动画设
1.9 响应式
1.8 登陆页式
1.7 主题式
排行
热门
文章
下载
读书

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训
版权所有: 红黑联盟--致力于做最好的IT技术学习网站