读书频道 > 网站 > 网页设计 > Python数据分析与挖掘实战
3.1.1 缺失值分析
15-12-14    下载编辑
收藏    我要投稿   

本文所属图书 > Python数据分析与挖掘实战

本书共15章,分两篇:基础篇和实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的立即去当当网订购

数据的缺失主要包括记录的缺失和记录中某个字段信息的缺失,两者都会造成分析结果的不准确,以下从缺失值产生的原因及影响等方面展开分析。

(1)缺失值产生的原因

1)有些信息暂时无法获取,或者获取信息的代价太大。

2)有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的故障等非人为原因而丢失。

3)属性值不存在。在某些情况下,缺失值并不意味着数据有错误。对一些对象来说某些属性值是不存在的,如一个未婚者的配偶姓名、一个儿童的固定收入等。

(2)缺失值的影响

1)数据挖掘建模将丢失大量的有用信息。

2)数据挖掘模型所表现出的不确定性更加显著,模型中蕴涵的规律更难把握。

3)包含空值的数据会使建模过程陷入混乱,导致不可靠的输出。

(3)缺失值的分析

使用简单的统计分析,可以得到含有缺失值的属性的个数,以及每个属性的未缺失数、缺失数与缺失率等。

从总体上来说,缺失值的处理分为删除存在缺失值的记录、对可能值进行插补和不处理3种情况,将在4.1.1节详细介绍。

点击复制链接 与好友分享!回本站首页
分享到: 更多
您对本文章有什么意见或着疑问吗?请到论坛讨论您的关注和建议是我们前行的参考和动力  
上一篇:1.3 功能
下一篇:1.5 小结
相关文章
图文推荐
JavaScript网页动画设
1.9 响应式
1.8 登陆页式
1.7 主题式
排行
热门
文章
下载
读书

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训
版权所有: 红黑联盟--致力于做最好的IT技术学习网站